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ABSTRACT 

Fix an integer n => 3. We show that  the alternating group An appears as 

Galois group over any Hilbertian field of characteristic different from 2. 

In characteristic 2, we prove the same when n is odd. We show that  any 

quadratic extension of Hilbertian fields of characteristic different from 2 

can be embedded in an S~-extension (i.e. a Galois extension with the 

symmetric group Sn as Galois group). For n 9s 6, it will follow that  An 

has the so-called GAR-property over any field of characteristic different 

from 2. Finally, we show that  any polynomial f = X n + �9 .. + al X + ao 

with coefficients in a Hilbertian field K whose characteristic doesn' t  divide 

n(n  - 1) can be changed into an Sn-polynomial f* (i.e. the Galois group 

of f* over K, Gal(f*,  K),  is Sn) by a suitable replacement of the last 

two coefficients a0 and a l .  These results are all shown using the Newton 
polygon. 

1. The Newton  polygon 

In this paragraph, we review the definition and basic properties of the Newton 

polygon. Let K be a field with algebraic closure/(. Let v be a non-archimedean 

valuation o n / f .  Let 

f =aoX n + a l X  n-l + ' ' ' + a n ,  ao,an ~O 

* T h e  a u t h o r  acknowledges  t he  f inancial  s u p p o r t  p rov ided  t h r o u g h  t he  E u r o p e a n  
C o m m u n i t y ' s  H u m a n  Po ten t i a l  P r o g r a m m e  u n d e r  con t r ac t  H P R N - C T - 2 0 0 0 -  
00114, G T E M .  
Received O c t o b e r  27, 2003 

47 



48 D. BRINK Isr. J. Math. 

be a polynomial with coefficients in K.  Write 

n 

f=ao. II(x- 
i = 1  

with ai  E /7/. Usually, it's difficult to compute the roots ai by means of the 

coefficients ai. In contrast to this, it 's easy to compute the valuations v(ai)  by 

means of the valuations v(ai). That  is what the Newton polygon does. 

Definition 1: The Newton polygon of the polynomial f is the maximal convex 

function hiP: [0,n] -----+ ~ with NP(i) < v(ai) for all i. 

The Newton polygon hip is piecewise linear. The maximal linear segments 

of hip are called edges.  The slopes of the edges are strictly increasing. The 

l e n g t h  of an edge is the length of the interval on which it is defined 

THEOREM 2: I f  NP has an edge with length I and slope 7, then f has exactly 

l roots with valuation 7. 

For a proof of this theorem and an algorithmic definition of IXlP, see Neukirch 

[5]. 

2. Ga lo i s  g r o u p s  as p e r m u t a t i o n  g r o u p s  

If f is a separable polynomial over a field K,  the Galois group Gal(f ,  K)  is a 

permutation group on the roots of f .  We need criteria to conclude that  this 

permutation group is the entire symmetric group. 

LEMMA 3: The symmetric group Sn is the only doubly transitive permutation 
group of degree n containing a transposition. 

Proof: Let G be a doubly transitive permutation group containing a transpo- 

sition T. Any transposition can be written 6TCr -1 with a E G. Therefore G 

contains all transpositions, and we get G = S n .  m 

LEMMA 4: Let G be a transitive permutation group of degree n. Assume G 

contains a subgroup that fixes one symbol and permutes the other n - 1 symbols 

transitively. Then G is doubly transitive. 

Proof." Let H be a subgroup of G that  fixes a E ~ and permutes ~ \{a}  

transitively. Let x ,x ' , y ,y '  E ~ with x ~ y and x' ~ y'. We are looking for 

a a  e G w i t h c r ( x )  = x '  anda(y) =y ' .  PickT1,T2 E G w i t hT l ( x )  = a a n d  
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72(a) = x'. According to the assumption, TI(y) # a and T~l(y ') # a. Pick 

p e H with p(T  1 (y)) : 7"2 1 (y'). Now, put a : T2 o p o Vl. | 

LEMMA 5: Let K be a field with algebraic closure f{. Let T = (T1 , . . . ,Tn)  

be an n-tuple ofindeterminates. Let f = f ( T ,  X) 6 K[T ,  X] be a polynomial. 

Assume f is monic, irreducible and separable in X.  Let ~ --- ( ( 1 , . . . ,  (n) 6 K n. 

Assume f(~, X) has one double root a in [( and else only simple roots. If  f (T, a) 

is a uniformising dement in the tield of formal Laurent series 

Tll ~1 ' ' ' ' '  ((T1 - -  ~1)) 

equipped with the (T1 -~l)-adic valuation, then the Galois group Gal(f ,  K ( T ) )  

contains a transposition. 

Proo~ The valued field E is an extension of K ( T ) .  Every Ti - ~i is a uni- 

formising element in E.  For i = 1, this is clear. For i > 1, one writes 

Ti  -- ~i 
T~ - ~ i  = - - "  ( T 1  - ~ 1 )  

T1 - ~1 

and notes that  the first factor is a unit. 

The coefficients of f are in the valuation ring of E.  By assumption, the 

reduction ] = f ( ~ , X )  has one double root a and else only simple roots. By 

Hensel's Lemma, there is a factorisation f = f l f 2 " " f r  over E with ]1 = 

(X - a) 2 and deg(f~) = 1 for i >__ 2. 

We show that  f l ( X  + a), and therefore also f l  = f l ( X ) ,  is irreducible. First, 

we compute the Newton polygon of f ( T ,  X + a). Write f ( T ,  X + a) = X n + 

�9 " �9 + blX + bo. All coefficients by are in the valuation ring of E.  The reduction 

of f ( T ,  X + a) has 0 as double root. It follows that  b2 is a unit, and that  bl 

and bo are in the valuation ideal. By assumption, bo = f ( T ,  a) is a uniformising 

element. We have now determined the Newton polygon of f ( T ,  X + a): 

1 

0 

-1 

n-2 n 
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1 These roots cannot By Theorem 2, f ( T ,  X + a) has two roots with valuation 3" 

lie in E.  Hence they are the roots of f l  (X + a) which is irreducible. 

This implies that  Gal(f ,  E) consists of the identity and a transposition. As 

Gal(f ,  E) is a subgroup of Gal(f ,  K (T) ) ,  the claim follows. | 

3. R e g u l a r i t y  a n d  e m b e d d i n g  p r o b l e m s  

Consider a field K.  A field extension E / K  is (here) called r e g u l a r  if K is 

algebraically closed in E. Let G be a finite group. A G - e x t e n s i o n  is a field 

extension which is Galois with Galois group isomorphic to G. The group G is 

called r e g u l a r  ove r  K if there exists a tuple of indeterminates t = ( t l , . . . ,  tn) 

and a G-extension E / K ( t )  with E / K  regular. If G is regular over K,  then there 

exists a G-extension E / K ( t )  with E / K  regular, see V61klein [8] page 25. 

We say that  L / K  can be e m b e d d e d  in a G-extension if there exists a G- 

extension E / K  with L C E. We say that  L / K  can be r e g u l a r l y  e m b e d d e d  

in a G-extension if there exists a tuple t = ( t l , . . . ,  t~) of indeterminates so that  

L ( t ) / K ( t )  can be embedded in a G-extension E with E / L  regular. 

THEOREM 6: Let K be a Hilbertian rid& Let L / K be a finite Galois extension. 

Let G be a finite group. If  L / K  can be regularly embedded in a G-extension, 

then L / K can also be (ordinarily) embedded in a G-extension. In particular, if 

G is regular over K, then G appears as GMo/s group over K.  

This is a refinement of Hilbert 's Irreducibility Theorem (HIT). A proof of 

HIT can be found in Fried and Jarden [2] chapter 12. A proof of Theorem 6 

appears in the forthcoming edition of [2]. 

In order to use Theorem 6, we need the following 

LEMMA 7: Let K be a field of characteristic different from 2. Let L / K  be a 

quadratic extension. Let G be a finite group. Let t = ( t l , . . . , t ~ )  be a tuple 

of indeterminates. Assume that K(t )  has a G-extension E containing ~ and 

with E / K regular. Then L / K can be regularly embedded in a G-extension. 

Proof: Write L = K(a)  with a 2 E K.  Define u = a .  v ~ .  We have u 2 = a2tl. 

Each of the tuples t '  = (v/~, t 2 , . . . ,  tn) and u = (u, t 2 , . . . ,  tn) is algebraically 

independent over K.  

Adjoin u to the fields K( t ) ,  K ( t ' )  and E. We get: K( t ,  u) = K(u) ,  K ( t ' ,  u) = 
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L(u) and E(u) = EL. See the diagram: 

~ EL 

E 

L(u) 

K ( t ' ) ' ~  I 

A ' ( t )  " 

Since u 2 c K( t ) ,  we have [K(u) : K(t) l  __< 2. Since E / K  is regular, E n L  = K. 

Therefore 

2 = IEL: E I <= IK(u) :  K(t) l  _< 2, 

and thus IEL: E I = [K(u) : K(t) l .  Consequently, IE :  K(t) l  = IEL: K(u)l .  

Galois theory gives Gal(EL/K(u)) ~- G. 

By Lemma 9.7 in Fried and Jarden [2], E is linearly disjoint from the algebraic 

closure/~" over K. Hence L is algebraically closed in EL, i.e. EL/L is regular. 

l 

4. R a t i o n a l i t y  

LEMMA 8: Let K be a field of characteristic 2. Let F be a quadratic extension 
of the rational function field K(x) with F /K  regular. Then F is a rational 

function field over K iff only one prime divisor p of K(x) /K  is ramified in F, 
and deg(p) = 1. 

7" Proof: Consider the different 0 = [Ii=l ~ of F/K(x). Its degree is deg(0) = 

~r__ 1 si deg(gl~). The prime divisors of F/K,  ramified over K(x),  are exactly 

~ 1 , . . .  ~3r. Each ~ i  has ramification index 2 and is thus wildly ramified. There- 

fore we have 2 <_ si =< 3, see Neukirch [5] Theorem III 2.6. Let g denote the 

genus of F/K. The Riemann-Hurwitz Genus Formula yields deg(~) = 2g + 2 

(see e.g. Fried and Jarden [2] section 2.9). 

Assume F/K  to be rational. Then g = 0, and deg(N = 2. Thus 0 has the 

form ~2 with deg(~)  = 1. The prime p of K(x) lying under gl is the only 

ramified prime in F,  and deg(p) = 1. 

Now assume F / K  is not rational. If g = 0, the above argument would give 

the existence of a prime of F of degree 1. Then F would be rational (Pried 
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and Jarden [2] section 2.9), a contradiction. Therefore g > 0, and deg(O) __> 4. 

It follows that a prime divisor of degree 1 cannot be the only prime divisor 

ramified in F. | 

5. The  main  resul ts  

THEOREM 9: Let n >= 3 be an integer and K a tield of characteristic different 

from 2. If Char(if) ~ n(n - 1), then K( t )  has an Sn-extension which is regular 

over K and contains V~. If  Char(K) I n( n - 1), then K ( s, t) has an Sn-extension 

which is regular over K and contains x/~. In both cases, any quadratic extension 

L / K can be regularly embedded in an Sn-extension. 

Proof: We divide the proof into three cases. 

FIRST CASE: Char(if) ~ n(n - 1). Let T be an indeterminate. Define 

f = f ( T , Z )  = X n ~ -X  n-1 + T .  

This polynomial is linear and primitive in T. According to Gauss' Lemma, f 

is irreducible over I f (T) .  We shall always consider f to be a polynomial over 

K(T) .  The derivative is 

f ' = n X n - l + ( n - 1 ) X n - 2 = r t x n - 2 ( X + n - 1 ) .  
n 

In particular, f '  7 L O. So f is separable. The Galois group Gal(f, I f (T))  is 

transitive. Over the field K((T)), equipped with the T-adic valuation, f has 

this Newton polygon: 

-1 

1 n 

Thus f has an irreducible factor of degree n - 1 over K((T) ) .  According to 

Lemma 4, Gal(f, I f (T))  is doubly transitive. 

Put 
__(1 - -n~  n {" ~1-? ' t  n - 1  l ( 1 - - r t )  n - 1  E I f* .  
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The polynomial f(~, X) = X ~ + X n-1 + ( has the double root a = (1 - n)/n 

and else only simple roots. The element f (T ,  a) = T - ~ satisfies the condition 

of Lemma 5. By Lemma 5, Gal(f,  K(T)) contains a transposition. By Lemma 

3, Gal(f,  K(T)) = S~. 

The same argument shows Ga l ( f , / f (T) )  = Sn where the tilde denotes alge- 

braic closure. Therefore the splitting field Spl(f, K(T)) is a regular extension 
of K.  

The discriminant of f is 

disc(f) = (-1)n(n-1)/~n~Tn-2(T - ~). 

In particular, disc(f) has the form a �9 u(T) where a is a non-zero square in 

K(T),  and ~ is a linear or fractional linear function over K.  Put  t = ~(T). 

Then K(t) = K(T) ,  and v~ E Spl(f, K(T)).  Now use Lemma 7. 

SECOND CASE: Char(K) r 2 and Char(K) I n. Let S ,T  be indeterminates. 
Define 

f = I ( S , T , X )  -~ X n - ~ x  2 -~ S X  q-T. 

We consider f to be a polynomial over K(S,  T). The derivative is 

f l  = 2X + S. 

As above, one sees that  f is irreducible and separable. The Galois group 

Gal(f,  K(S,  T)) is transitive. 

Over the field K(T)((S-1)) ,  equipped with the S- l -adic  valuation, f has this 
Newton polygon: 

0 

-1 

n-2 n -1  n 

As above, Gal(f,  K(S,  T)) is doubly transitive. 

The polynomial f(0,0,  X) = X ~ + X 2 = X 2 ( X  ~-2 + 1) has the double root 

a = 0 and else only simple roots (because Char(K) { n - 2). The element 

f (S ,  T, a) = T satisfies the condition of Lemma 5. As above, Gal(f,  K(S,  T)) = 
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The same argument shows Gal(f , /~(S,  T)) = S n .  It follows that the splitting 

field Spl(f, K(S, T)) is a regular extension of K.  

The discriminant of f is 

d i s c ( f  ) = ( - 1 ) ( n - 1 ) ( n - 2 ) / 2 2 n ( ( ~ 2 S ) n +  
S 2 S 2 + T ~ . 

) 4 2 

In particular, disc(f) has the form ~(T) where ~? is a linear function over K(S). 
Put  s = S and t = ~(T). Then K(s, t) = K(S,T),  and x/t e Spl(f, K(S,T)). 
Now use Lemma 7. 

THIRD CASE: Char(K) r 2 and Char(K) [ n - 1. Let S ,T  be indeterminates. 

Define 

f • I ( S , T ,  X )  : X n -t'- S X  n-a  "1- X n -2  -k- T.  

We consider f to be a polynomial over K(S, T). The derivative is 

f '  -~ X n -1  - X n -3  -~ x n - 3 ( X  -'[- 1)(X - 1). 

As above, one sees that  f is irreducible and separable over K(S, T). The Galois 

group Gal(f,  If(S, T)) is transitive. 

Over the field K(T)((S-1)), equipped with the S -Lad le  valuation, f has this 

Newton polygon: 

1 

0 

-1 

1 2 n 

As above, Gal(f,  K(S, T)) is doubly transitive. 

The polynomial f ( - 1 , - 1 ,  X) = X n - X  n-1 + X n-2 - 1 has the double root 

a = 1 and else only simple roots. The element 

( S+l  
f ( S , T , a ) = S + T + 2 = ( T + I )  1 + ~ - - ~ ]  

satisfies the condition of Lemma 5. As above, Gal(f,  K(S, T)) = Sn. 
The same argument shows Gal(f , /~(S,  T)) = Sn. It follows that  the splitting 

field Spl(f, K(S, T)) is a regular extension of K.  
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The discriminant of f is 

disc(f)  = (-1)(n+l)(n+2)/2Tn-3(S + T + 2)(T + ( -1 )n (2  - S)). 

In particular,  it has the form a .  ~(S) where a is a non-zero square in K(S,T) ,  

and ~? is a fractional linear function over K(T). Put  s = ~(S) and t = T. Then 

K(s, t) = K(S, T), and v ~ ~ Spl(f,  K(S, T)). Now use Lemma 7. | 

COROLLARY 10: Let n >= 3. Any quadratic extension of Hilbertian fields of 

characteristic different from 2 can be embedded in an Sn-extension. 

Proo~ Use Theorem 6. | 

THEOREM 11 : Let n __> 3. The alternating group An is regular over any field 
of characteristic different from 2. In characteristic 2, the same holds when n is 
odd. 

Proof: Let K be any field of characteristic different from 2. By Theorem 9, 

either K(t) or K(s, t) has an Sn-extension which contains vq  and is regular over 

K.  This field is an An-extension of K ( v q )  or K(s, v~), respectively. 

Now assume that  K is a field of characteristic 2, and tha t  n is odd. Let S, T 

be indeterminates. Define 

f = f ( S , T , X )  = X n + S X  n-1 + X 2 + T n. 

We consider f to be a polynomial over K(S, T). The derivative is 

f / ~ X n - 1 .  

As in the proof of Theorem 9, one sees that  f is irreducible and separable. The 

Galois group Gal( f ,  K(S, T)) is transitive. 

Over the field K(T)((S  -1)), equipped with the S - l - a d i c  valuation, f has this 

Newton polygon: 

-1 

1 n - 2  n 
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As in the proof of Theorem 9, one sees that Gal(f, K(S, T)) is doubly transitive. 

Consider the field E = K(S)((T)) equipped with the T-adic valuation. The 

coefficients of f are in the valuation ring of E, and the reduction 

] =  X n + SX n-1 + X 2 = X2(X n-~ + SX n-3 + 1) 

has one double root and else only simple roots. By Hensel's Lemma, there exists 

a factorisation f = flf2"'" fr over E with deg(fl) = 2 and deg(fi) = 1 for i __> 2. 

Over E, f has this Newton polygon: 

0 
1 

/ 
t 

n-2 n 

Thus f has two roots a,/~ with valuation n/2. Since n is odd, these roots 

are not in E. It follows that fl = (X - a)(X -/~) is irreducible over E. 

Therefore Gal(f, E) contains a transposition. This transposition also belongs 

to Gal(f, K(S, T)). By Lemma 3, Gal(f, K(S, T)) = Sn. 
The same argument shows Gal(f,/<(S, T)) = Sn. It follows that the splitting 

field Spl(f, K(S, T)) is a regular extension of K. 

Now, let F be the quadratic extension of K(S, T) contained in Spl(f, K(S, T)). 
The field Spl(f, K(S, T)) is an An-extension of F. We show that F has the form 

K(S,T'). 

The Galois group Gal(f, K(S)(T)) contains a transposition and is therefore 

not contained in An. Thus F N K(S)(T) = K(S,T). It follows that K(S) is 

algebraically closed in F. 

Let p be a prime divisor of the function field K(S, T) over K(S). It is de- 

termined by the reduction T E K(S) U (oc}. Assume that T ~ 0, c~. Then 

the coefficients of f are in the valuation ring of K(S, T), and the reduction ] 

has only simple roots. It follows that p is unramified in Spl(f, K(S, T)) and 

therefore also in F. 

Now assume that T = r Then the coefficients of f are not all in the valuation 

ring of K(S, T). Let 

S n 1 1 2 g(X) = f(TX) = X n + ~ x  - + ~ X  +i. 
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Obviously, f and g have the same splitting field over K(S ,  T).  The reduction ~ = 

X n + 1 has only simple roots. It follows that  p is unramified in Spl(f, K(S ,  T))  

and therefore also in F.  

We conclude that  a prime divisor p is ramified in F only when T = 0, and in 

this case deg(p) = 1. By Lemma 8, F has the form K(S ,  T~). | 

COROLLARY 12: Let n __> 3. The alternating group An appears as Galois group 

over any Hilbertian field of characteristic different from 2. In characteristic 2, 

the same holds when n is odd. 

As a last application of our method, we show: 

THEOREM 13: Any  polynomial of the form 

f = f ( S , T , X )  = X n + a n _ i X  ~-1 + . . .  + a2X 2 + S X  + T  

with coefficients ai in a field K with Char(K) { n(n  - 1) has Galois group Sn 

over K(S ,  T).  

Proof." It is enough to show that  f ( X )  is a Morse polynomial, i.e. that  i f ( X )  

has only simple roots, and that  f takes different values on these roots. This 

follows either from Theorem 4.4.5 of Serre [6], or, more elementary, using the 

same arguments as in the proof of Theorem 9 above. 
n--1 

Write i f ( X )  = n .  I-Ii=l ( x  - /~i)  and define the invariant 

M = E ( f ( / 3 i )  - f(/~/))2. 
i< j  

Then f ( X )  is a Morse polynomial iff M r 0. M is a polynomial in 

al = S, a2 , . . . ,  an- l ,  ~1 , . . . ,  fin-1. Each term of this polynomial has total de- 

gree n(n - 1)(n - 2) with respect to /~1 , . . . ,  fin-] and by letting the total degree 
of ai be n -  i. 

By the Main Theorem on Symmetric Polynomials, M can be written as a 

polynomial in a l , . . . , a n - 1  with rational coefficients, each term of which has 

total degree n(n - 1)(n - 2). 

Now we evaluate M at (S, 0 , . . . ,  0). Then f ( X )  = X n + S X  and i f ( X )  = 

n X  n - i  + S. Each root/~i of fr satisfies f(/~i) = n~nl s/~i. Thus 

.. ( n  - 1)(n-1)(n-2) 
M(S,O, .  ,0) = , ~ /  s(n-1)(n-2) E(]~ i _ flj)2. 

i<j 
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The product YI i<j (~ i  -- /~j)2 is simply the discriminant of X n-1 "-~ S / n .  We get 

M(S, 0 , . . . ,  0) -- (--1)(n-1)(n-2)/2(n -- 1)(n-1)2n-n(n-2)sn(n-2).  

As S has total degree n -  1, S n(n-2) has total degree n ( n -  1 ) ( n -  2). Therefore 

M (S, 0 , . . . ,  0) is the only term in the general polynomial M =  M (S, a 2 , . . . ,  an-1) 

containing S to the power n(n  - 2). It follows that  M is non-zero for any choice 

of a2 , . . . ,  an-1 E K.  This finishes the proof. | 

COROLLARY 14: Consider a polynomial f = X n + a n _ l  X n - ~  + . . .  + a 2 X  2 Jr 

al  x -b ao with coefficients in Q. Let [ I be the usual absolute value or a p- 

adic valuation on Q. Let an e > 0 be given. Then there are a~,a~ E Q with 

lao-a~l < e and la l -a~l  < e so that f* -- x n " ~ - a n _ l X n - l " ~  ' '  .+a2X2 +a~X +a~ 

is an Sn-polynomial, i.e. Gal(f*, Q) = Sn. 

Proof  Put F(S,  T, X )  = X n + a n _ i X  ~-1 + . . .  + a2X 2 + S X  + T. By Theorem 

13, the splitting field E = Spl(F(X), Q(S, T)) is an Sn-extension of Q(S, T). 

Let a l , . . . , a n  6 E be the roots of F ( X ) .  Write E = Q(S ,T) (~ )  with /~ = 

m l a l  + . . .  + m~an and mi 6 Z. Let G be the minimal polynomial of/~ over 

Q(S, T). It has degree n! and its coefficients are in Q[S, T]. Thus we may 

consider G as a polynomial in S, T and X over Q and write G = G(S, T, X) .  

By Hilbert's Irreducibility Theorem, there are a~, a t 6 Q so that  G(a'l, a'o, X )  

is irreducible over Q. Then G(a'l, T, X )  is irreducible over Q(T). By Corollary 

G(al,  %, X) is irreducible 4, VIII w in Lang [3], there is an a~ close to ao so that  ' * 

over Q. Then G(S, a~, X )  is irreducible over Q(S). By [3] again, there is an a~ 

close to al so that  G(a~, a~, X )  is irreducible over Q. 

Put  f* F ( a l , a 0 , X )  and write f* n X /~* = = * * = I-Ii=o( - a~). Then mla~ + 
�9 "" + mnan  is a root of G(a~, a~, X) .  The splitting field of f* contains/3* and 

therefore has degree at least n! over Q. It follows that  f* is an Sn-polynomial 

over Q. | 

6. T h e  G A R - p r o p e r t y  

Let G be a finite centerless group, considered as a subgroup of its automorphism 

group Aut(G). Let t = ( t l , . . . ,  tn) be a tuple of indeterminates. The group G 

is said to be GAR over a field K if there is a G-extension E / K ( t )  with E / K  

regular, and if in addition the following two conditions hold: 

(GA) There is a subfield F of K( t ) ,  containing K,  such that  E is Galois over 

F with Galois group isomorphic to Aut(G), and under this isomorphism, 

G a l ( E / K ( t ) )  corresponds to G. 
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(R) Every field extension F I of F with KsF ~ = Ks(t)  is a rational function 

field over K r := Ks n F ~. Here Ks denotes the separable algebraic closure 

of K.  

By Matzat 's Embedding Theorem for Centerless Kernel, see [4], Theorem IV 

3.6, a finite embedding problem over a Hilbertian field K is solvable if each 

composition factor of the kernel is GAR over K.  Thus the following theorem 

generalises Corollary 10 for n # 3, 6. 

THEOREM 15: The alternating group An with n >= 4 and n # 6 is GAR over 
any field of characteristic different from 2. 

Proos An is centerless for n __> 4. If in addition n # 6, then Aut(An) = Sn (see 

Suzuki [7], page 299, but note that  the case n = 3 is falsely included). Assume 

that  Char(K) { n(n - 1). Then, by Theorem 9, K(t) has an S~-extension E, 

regular over K and containing v/t. Thus condition (GA) is satisfied. 

Now let F' /K( t )  be an extension with KsF' = Ks(x/t). Put  K '  := Ks n F'. 
By Galois theory, all fields between K(t) and Ks(t) have the form L(t) with 

K C_ L C Ks. Hence F' n Ks(t) = K'(t). Furthermore, 

IF ' :  K'(t)] = [Ks(v~):  Ks(t)] = 2. 

If F '  contains v~, then F '  = K'(v~) ,  and we are done. If F '  doesn't con- 

tain v/t, then F ' (v~)  is a V4-extension of K'(t), containing F '  and K'(x/~) 

as quadratic subfields. The intersection F ' (v~)  N Ks(t) has degree 2 over 

K'(t). Hence it is the third quadratic subfield of F'(x/t)/K'(t).  It has the form 

F ' (v~ )nKs ( t )  = K'(v/-~, t) for some (non-square) a E K' .  Thus F '  = K ' ( v / ~ ) ,  

and condition (R) is satisfied. 

K(v ) Ks( ) 

K ( t ) -  K'(t) Ks(t) 

Now assume Char(K) divides n(n-1)  and is different from 2. Then, by Theorem 

9 again, K(s, t) has an Sn-extension E, regular over K and containing v~. Thus 

condition (GA) is satisfied. 

Let F / K ( s ,  t) be an extension with KsF' = Ks(s, v~). As above, F t is a 

quadratic extension of F' N Ks(s, t) = K~(s, t). The same argmnents show that  
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either F' = K'(s,  vq), or F '  = K' (s ,  vZ~) for some non-square a �9 K' .  Hence 

condition (R) is satisfied. | 

Notes: In Section 4.5 of [6], Serre shows that  An is regular over Q using the 

same polynomial as in the first case of the proof of Theorem 9 above. In a 

series of papers, Abhyankar et al. show that  An is regular over any algebraically 

closed field of positive characteristic p < n, see [1] and the references therein. In 

Chapter IV of [4], Malle and Matzat show the GAR-property over Q for many 

families of finite simple groups, including all An with n # 6. It is also shown 

that  A6 is GAR over Q~b, the maximal abelian extension of Q 
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